平成 28 年度 SARD Hybrid Rocket Project 活動詳細

能代宇宙イベントに参加するために打ち上げ実験を mini-CAMUI エンジンを使用し、3 月 と 6 月 2 回行った。

3月		6 月	
機体径	135mm	機体径	135mm
全長	2060mm	全長	2060mm
重量	9900g	重量	10100g
最高到達高度	103m	最高到達高度	58m

3月実験機

写真 I:3 月打ち上げ実験機

実験結果 機体、ロガーデータ回収成功 ペイロード(缶サット)の放出成功

6月実験機

写真Ⅱ:6月実験機

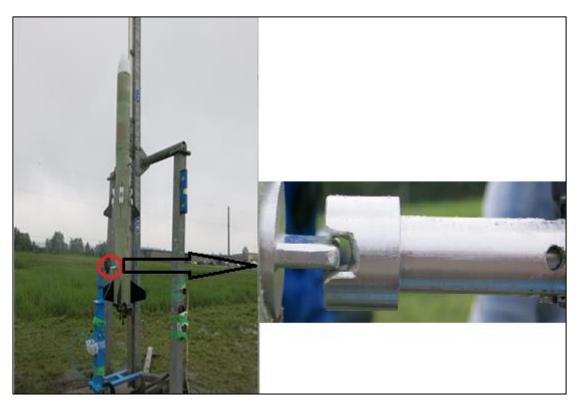
実験結果 機体、ロガーデータ回収失敗 ペイロード(缶サット)1部放出成功

能代宇宙イベントで使用する自作 GSE

コントロールボックス(CB)、サテライトコントローラー(SC)

CB を点火点に設置し、SC は射点に設置する。

機能としては、点火・加圧・パージ・緊急停止(エマスト)を行うことが出来るまた CB 側では電流値、加圧までの時間を見ることもできる。(写真参照)


3月、6月の実験では悪天候のため無線化を断念したが、室 蘭工業大学敷地内での動作実験は成功し、無線化は体現済み

タワー

ランチャに固定し GN_2 が流れることで空圧弁が動作し、その動力を機体(加圧バルブ)に伝える。タワーは上部 中部 下部に分かれていて上部にあるボルトを緩めアダプターとアームのかみ合わせを調整する(写真V参照、①アダプター ②アーム)。

写真V:タワー外観

写真VI: アダプターとアームのかみ合わせの調整

回収機構(6月打ち上げ実験)

機構説明

サーボモーターの先に刃を付けサーボモーターが動くことによってテグスが切れパラシュートが放出される

サーボモーターが動作するきっかけは Xbee による無線通信、加速度が 20m/s^2 を検知してから 4.5 秒後に開くタイマー式、気圧差の 3 つである

写真VII: 回収機構外観