

Advanced Ionospheric Probe Onboard FORMOSAT-5 Satellite

C. K. Chao¹, C. M. Huang¹, Y. H. Chu¹, C. L. Su¹, J. Y. Liu¹, and S. Minami²

¹Institute of Space Science, National Central University, Taiwan

²Advanced Research Institute for Natural Science and Technology, Osaka City University, Japan

UN/Japan Nano-satellite Symposium, Nagoya, Japan, 10-13 October, 2012

- Advanced Ionospheric Probe (AIP)
- Specifications
- Functional verifications
- Summary

FS-5/AIP Advanced Ionospheric Probe

- FORMOSAT-5 mission orbit is anticipated at 720 km altitude with inclination 98.28° as a sun-synchronous orbit in equatorial descending time between 9:45 am and 10:15 am LT.
- A piggyback science payload can be accepted if
 - Mass: < 5 kg.
 - Power in average: < 5 W.
 - Mission life time: > 2 years.

 Advance Ionospheric Probe is an all-in-one plasma sensor to install on the FORMOSAT-5 satellite with sampling rate up to 8,192 Hz to measure ionospheric plasma concentrations (N_i), velocities (V_i), and temperatures (T_i and T_e) over a wide range of spatial scales in a time-sharing way.

Data flow and capabilities

Parameters	Range	Sensitivity	Accuracy
Ci	3% to 100%	١%	10%
Ni	4x10 ² to 1.2x10 ⁷ cm ⁻³	١%	10%
Vi	±3.2 km s ⁻¹ ± 5 km s ⁻¹ (ram)	± 10 m s ⁻¹ ± 100 m s ⁻¹	± 50 m s ⁻¹ ± 200 m s ⁻¹
Ti	500 to 10,000 K	±50 K	±200 K
T _e	500 to 10,000 K	±50 K	±200 K

Fine structures inside the equatorial spread F

The AIP can explore 8 x finer scale fluctuations than those by ROCSAT-1/IPEI.

bubbles A and B in Figure 2.

Figure 3. Examples of power spectra for (ΔNN_0) and ΔV_z fluctuations at various parts of the bubbles as indicated by vertical lines in

Global observations on plasma irregularities

Taiwan GPS scintillations (S₄ >0.5) caused by ESF

Chang, 2008, master thesis

Functional diagram

FS-5/AIP

Redundant design for controllers, DC/DC, ADC and DAC, ammeters, etc.

Electrical specification

- Input voltage: 28±6 VDC (> the range between 26 V and 34 V).
- Power: ~4.74 W in average
 - Sensor: 2.24 W (average).
 - SPEU: ~2.5 W (average).
 - Single event latch-up protection.
- Dual command and telemetry interfaces (asynchronous RS-422, 19.2 kbps)
- Dual science data interfaces (synchronous RS-422, IMbps)

FS-5/AIP Single event latch-up protection

Mechanical specification

- Sensor: 1.46 kg (<1.5 kg) and located on the top panel.
 - Head: 52° field of view (>50°).
 - Dimension: 100 (L) x 100 (W) x 100 mm (H).
 - Weight: 0.582 kg (6061-T6).
 - Stand:

FS-5/AIP

- Dimension: I 40 (L) x I 30 (W) x 350 mm (H).
- Weight: 0.878 kg (7075-T6).
- SPEU: located inside S/C.
 - Dimension: I80 (L) x I80 (W) x 60 mm (H).
 - Weight: ~ 1.950 kg (6061-T6).
- Harness from SPEU to sensor: < I kg.
- Total mass: ~ **4.448** kg (< 5 kg).

- Load factors
 - Out of plane: **70** G (>20 G).
 - In-plane: **52** G (>20 G).
- Margin of safety (MS)
 - Ultimate: **2.10** (> 0).
 - Yield: **2.72** (> 0).
- Buckling safety margin (MS_B): 3.45 (> 0).
- Sinusoidal vibration (no collision during vibration)
 - 9G in-plane.
 - 10-300 Hz.

3.120+000 2.2356+000 2.253e+000 2.259e+000 1.985e+000 1.412e+000 1.134e+000 8.502e-001 5.672e-001 2.235e-001

1.102+003 9.917+002 8.816+002 7.714e+002 6.612a+002 5.510+002 4.408e+002 3.906e+002 2.204e+002 1.102a+002

5

Functional verifications

• IT submode

FS-5/AIP

- RPA submode
- IDM submode
- ISD test

RPA mode (I Hz)

AIP test on RPA mode with IRV = A+B+C+D (post-sum) $T_{i_total} \sim T_{i_A} \sim T_{i_B} \sim T_{i_C} \sim T_{i_D} \sim 2,000 \text{ K}$

RPA mode (4 Hz)

RPA mode (8 Hz)

lon drift meter mode

Plasma source

Summary

- AIP progress: WSD (1/13/2012) → MDR & SDR (3/6/2012)
 → PDR (5/9/2012) → ISD (7/10/2012) → CDR (9/7/2012) →
 DRR (1/12/2013) → PAR (8/12/2013) ...
- Electrical interfaces and mechanical structure analysis are done.
- A sweeping frequency (I Hz) is selected for all modes to reduce quasi-hysteresis effect in the I-V curves.
- In the future, the AIP can also be applied to complement GPS radio occultation experiment with in-situ measurements in a constellation (from 7th to 12th) of the FORMOSAT-7 microsatellites. It is also possible to fit in a nano-satellite configuration to provide complete parameters of ionospheric plasma.