国際周波数調整 + 国内免許申請 (申請者の立場から) Applications for ITU and domestic radio licenses

東北大学 特任准教授 坂本祐二 Yuji Sakamoto Tohoku University

背景 background

<u>東北大学が保有する実験試験局</u> Ground Stations and Satellites of Tohoku Univ.

宇宙局 Satellites

SPRITE-SAT (2009年~)

CRESST (2009年~)

RAIKO (廃局済) (2012年~2013年)

RISING-2 (2014年~)

PHL-MICROSAT (通称DIWATA-1) (2016年~)

2018年度の申請 (new applications in 2018) 宇宙局(申請) Satellite by Tohoku 運用協力 Joint Operation

RISESAT (2019/01 launch)

地球局(変更)

CRESST (2009年~)

DIWATA-2 (2018/10/29 launched) 所有 フィリピン国 DOST/ASTI Owned by Phillipines

運用協力 Joint Operation

ALE-1 (2019/01 launch) 所有 (株)ALE Owned by ALE

- 般社団法人 **日本アマチュア 無線連盟** THE IAPAN AMATEUR RADIO LEAGUE

周波数申請の必要性 Necessity of Frequency application

申請の必要性(義務) Duty for use of RF signals

- RF通信は、自由に使えるほど、無限なリソースではない
- 衛星との通信は、**地上の通信に影響**を与える
- 衛星との通信は、**他衛星の運用に影響**を与える
 - ・ 衛星→地上の通信(~1Wなど)よりも、地上→衛星(~50Wなど)のほうが、影響が大きい
- RF radio frequencies are Limited resources, not infinitely used.
- Communication with satellite can affect a ground communication
- Communication with our satellites can affect to others' satellites
 - More than Satellite->Ground transmission (- 1W, example), Ground->Satellite transmission (- 50W, example) will give more effect to other communications

申請の必要性(義務) Duty for use of RF signals

- [ITUへの申請] **どの周波数をどの場所(軌道**)からどの**電波強 度**で出力するか、世界に公開する義務がある
- [総務省への申請] 日本国内での干渉(対衛星・対地上)をより厳密に精査して、調整が必要。**免許状の取得が義務**である。
- [to ITU] specification of radio signals must be opened to world: which frequency, from where (ground location, or satellite orbit), how strength of transmission
- [to Japanese government] interference to domestic licensed radios is deeply surveyed and coordinated. Finally, domestic RF license must be obtained.

- 打上から2年前には総務省(or UNISEC事務局)に通知
 - 総務省からITUへの申請には、予算が必要。枠を使い切ると、その年度は申請できなくなる
- Possibility of satellite launch must be informed to government (or UNISEC) before 2 years
 - budget is necessary to apply for ITU from government. If all the budges are consumed, new application can't be submitted by end of fiscal year.

- 総務省に資料(実験計画書等、回線設計等)を提示してから、 ITUへのAPI申請まで6か月以上
 - API申請データ(API)の作成は、総務省(委託会社)の支援が得られる
 - 正しい回線設計を提示することが申請者の重要タスク
- Plan of experiments (by satellite and ground station) and link budget analysis are submitted to government. In this process, more than 6 months are required until the official application is submitted to ITU.
 - government (or supporting company) can help to make the data for ITU
 - correct link budget analysis must be submitted, this is important task for developer side.

- ITUは申請書を受けてから公開するまで2**か月**、クレーム受付期間が4**か月、合わせて6か月**
- **最初のクレームに対して返答書**を返す (数か月、打上までの切迫度による)
 - 1回返答を返せば、一連の行程をクリア。国内免許申請(交付)の議 論に移れる
- 2 months until ITU opens the API (advanced publication information), and wait for 4 months to receive any claims from other countries. Total 6 months.
- developer must replay to clames (several months, depending on time until launch)
 - after the 1st replys, we can proceed to domestic license discussion.

- [国内免許の調整] 干渉が懸念される**国内機関との** 調整、ざっくり3~6か月
 - **予備免許状の交付**、点検業務(最後のパネル閉じ前)、打 上後の通信実験
 - [!] 地上で衛星通信機を放射することは許可されない
- [domestic license coordination] coordination with other domestic radio licenses for about 3 6 months
 - preliminary license is published, then we can close the satellite panel. This license is used for the test communication with satellite after the launch
 - [!] this license is not valid for ground communications before the launch

申請に必要な時間

- 国際周波数調整と、国内免許状の調整は、オー バーラップして進める
 - 部署が違うので、必ずしも連携されて処理されるわけではない。
- 総務省(本省)との国内免許状の調整と、地方の総合通信局との調整も、同時に相談すること
 - 本来は、地方の総合通信局へ第一の相談をして、地方の通信局を経由して総務省と調整するのが正しい経路
- ITU applications, and domestic license applications should be processed simultaneously

ITU申請の実例 actual example of our ITU application

関連ITUプロファイル一覧 ITU profiles submitted by Tohoku U.

ITU profiles	参照する衛星 actual satellite names	ステータス current status
SPRITE-SAT	SPRITE-SAT	PART II-S BR63(bringing into use) = 2009.01.23 A2b(Period of valid.) = 15 (通告資料有効期限 2024.01.22)
RISESAT	RISING-2 DIWATA-1(PHL- MICROSAT)	API/B Date of receipt = 2013.01.23 (通告期限 最長7年 2020.01.23) 通告せずに、このまま期限切れにする
JCUBES-B	RISESAT (2018) ALEe (2018) 他	API/B (IFIC 2858) Date of receipt = 2017. 04. 11 RISESAT, ALE-1の運用開始以降、速 やかに通告申請作業を開始する。

ITU Profile: JCUBES-B (submitted by Tohoku U. and others)

- 今後計画する群衛星のためのAPI
 - 12機のSSO衛星 [現状、4機を使用]
 - 12機のISS放出衛星
- Our satellite series incl. future satellites
 - 12 satellites in SSO orbit (now, 4 sats are using)
 - 12 satellites in ISS-released satellites

ITU Profile: JCUBES-B (submitted by Tohoku U. and others)

- Uplink:
 - AIS
 - SCMD, UCMD
 - Store&Forward(U-band)
- Downlink:
 - STLM (9M80G1D, 9M80D1D)
 - XTLM(29M0G1D, 29M0D1D)

[!] 実際の衛星は、この定義した電波の「範囲内」で使用する。 ITUへの申告値は、幅が広くても良い

[!] actual satellites are using "part of suggested specifications". Application values are not necessary to same as actual satellites, in the range of suggest values.

ITU申請前の検討事項 consideration before ITU application

- 1衛星か複数機か
 - アマチュア無線機であれば、1台ごとに申請 [大変]
 - 実験試験局であれば、複数機(群衛星)が有利
 - シリーズ衛星 (電波の特性が同じ) であれば、再申請不要
- Single or Multi
 - amateur radio satellite is coordinated by IARU in advance, and same values are used in ITU API. One paper for one satellite is necessary.
 - For experimental satellites (non-amateur sats), multiple satellites will have advantages
 - by using same specs of up/down communications, application can be finished in one time.

ITU申請前の検討事項 consideration before ITU application

- 軌道
 - **太陽同期か、**ISS**軌道か**、それ以外か
 - **最低高度の定義**が重要。高度が低下するのであれば、250km **ぐらい**まで定 義するなど
- 電波の質
 - 周波数範囲、型式、出力
 - **回線計算をよく吟味**すること。一度決めると、変えられない [!] **余裕を 持った数値。広い型式、大きい出力**
- orbit
 - SSO, or ISS release, or else
 - minimum altitude is important. we need to think the RF strength in 250km altitude for final phase of descending satellites
- specification of signals
 - range of frequencies, radio types (modulation and width), output power
 - link budget is really important. The values can't be changed after the submission
 - [!] some margins can be added to value. Wider frequency range, stronger radio signals.

B1a/BR17 Beam designation	DL1	B1b Steerab	ole B2	? Emi-Rcp E	B3a1 Max.	co-polar gain	5
B2bis.a Transmit only when visible from	m notified service area	B2bis.t	Min. Elev. Angl	е			
	B3	c1 Co-polar anten	nna pattern				
Co-polar ref. pattern Coef. A	A Coef. B				Co-po	lar rad. diag.	
						3	
B4a3a1 Angle alpha	B4a3a2 Angle beta	¬	•	•	•	•	
BR92 Attach. for missing angle alpha/l	oeta						
BR7a/BR7b Group id. 107	612512	BR1 Date of re	ceipt 07.03.20	07 C2c RR	No. 4.4		
BR14 Special Section API/B	/11 MOD-1	AP	PI/B/11		API/A/4530		
C4a Class of station EA]	C3a Assigned	freq. band				
C4b Nature of service CP	1	C6a Polariz	zation type L		C6b Polarization a	ngle	
C8d1 Max. tot. peak pwr.	C8d2 Contiguo	us bandwidth	50				
C11a2 Service area XAA	\				C11a3 Service	ce area diagram	_
					CTTa5 Service	ce area diagram	
<u> </u>		n. resp. A	BR16 Value of typ	e C8b			
RR60 Regulatory deadline(s) 11 44/11	44 1 07.03.2014		_				
C1 Frequency Range							
	1b Upper limit						
435 MHz 43	8 MHz						
C7a C8a1/0	C8b1 C8a2/C8b2	C8c1	C8c2	C8c3	C8c4	C8e1 C8	e2 C8f
Design. of emission Max. pea		Min. peak pwr	Attch.	Min. pwr dens.	Attch. C	/N ratio Atte	ch. E.i.r.p. on the
1 20K0F2D	4 -32	1.5					
C10b1 C10b2	C10c1	C10c2 C10d1/	/C10d2 C10d3	C10d4 C10d6	6		
Assoc. earth station id. Type	Geographical coord.	Ctry Cls. /	Nat. Max. iso	. Bmwdth Noise			
			gain	temp.			
	139E45 29 35N42 54	J 1 TA	CP 20	20 49			
UNISEC GS T HAM T		J 1 TA 1 TA	CP 15 CP 15	20 49	90		
111111		1 18			tom		
C10b1 Assoc. earth station id. Co-p	polar ref. pattern C	oef. A	Coef. B	Co-polar antenna par Coef. C	Coef. D	Phi1	Co-polar rad, diag.
		UEI. A	CUEL D	COEL C	COEL D		ii Co-poiai (au. ulau. I
ISSL	oldi for pattorn						4

- [!] C11a2 Service areaは重要です。本例では、<u>この回線は全世界 (XAA) を定義しています</u>。 アマチュア無線衛星であれば、Service areaは全世界で問題ないです
- [!] C1*, C7*, C8* の数値は最重要です。提出前に何度も再確認してください。 国内免許申請時に、これらの値を逸脱することはできません
- [!] C10*にはテレメトリを受信する局を定義します。将来の増設局に備えて <u>T (Typical) を入れておくことを推奨します。</u> <u>「T かつ Ctry = 空白 」で、世界のどこででも受信可能です。</u>

回線計算等 link budget analysis

衛星側

- (1) 送信周波数 = 2285MHz
- (2) 送信電力 = <mark>5 W = +7dBW</mark> 含む パワーアンプ
- (3) 送信フィーダ損失 = -1dB + カプラ損失(2分配) = -3dB

(パッチアンテナ)

(4) アンテナ利得 = 5dB

送信機

RFケーブル

PFDの限界値から 出力5Wを定義

PFD = Power Flux Density (地表面電力束密度)

- (3b) 最大送信電力
- (3g) 最大電力密度

(5) EIRP = 8 dBW (= 6.3 W)

+7 -1 -3 +5 = 8 dBW

JCUBESA Sバンドダウンリンクの例

ענר איי

(12) ポインティング損失 衛星側 = 0 dB (for API)

(5) EIRP = 8 dBW

(10) 伝搬損失

 $= -164.7 \, dB$

(1805km

@ EL=5deg, alt = 400km)

(6) 偏波損失= 0 dB

(11) 降雨損失= 0 dB

8 dBW

- 164.7 dB

24 / 32

+ 32.2 dB

- 1 dB

= - 125.5 dBW

(= -95.5 dBm)

(12) ポインティング損失 地上局側 = 0 dB (for API)

(13) 受信アンテナ利得

= +32.2 dB (@2.4m, 2285MHz)

(14) 受信フィーダ損失<u>= -1 dB</u>

*:当該無線局

宇宙通信概念図(RISESAT)

No.	Item	Unit	III. S-Down	IV. X-Down	III. S-Down	IV. X-Down	Remarks
	地上局		CRESST	CRESST	FUT	FUT	
			DS	DX1L	DS	DX1L	
(0a)	アンテナ直径	m	2.4	2.4	10.26	10.26	
(0a')	アンテナ直径(実効値)	m	1.32	2.15	10.26	10.26	(Sendai局) 実測半値幅から逆算
	ビットレート(BR)		200 ksps	4800 ksps	200 ksps	4800 ksps	BPSK
	変調方式		BPSK	BPSK	BPSK	BPSK	
	型式		400KG1D	9M80G1D	400KG1D	9M80D1D	
(1)	送信周波数	MHz	2285	8483	2285	8483	
(2)	送信電力	mW	100	500	100	500	
(2b)	送信電力	dBm	20.0	27.0	20.0	27.0	=10log(2)
(2c)	送信電力	dBW	-10.0	-3.0	-10.0	-3.0	=10log(2)-30
(3)	送信フィーダ損失	dB	-1.0	-1.0	-1.0	-1.0	no coupler (single side)
(3b)	最大送信電力	dBW	-11.0	-4.0	-11.0	-4.0	
(3c)	占有帯域幅	kHz	400	9800	400	9800	
(3d)	帯域内リップル	dB	4	4	4	4	for G1D
(3e)	参照帯域幅	kHz	4	4	4	4	
(3f)	最大電力密度用 帯域幅	kHz	400	9800	400	9800	=(3c) in G1D
(3g)	最大電力密度	dBW/Hz	-63	-70	-63	-70	=(3b)+(3d)-10log(3f)-30
(4)	送信アンテナ利得	dBi	4.5	4.5	4.5	4.5	satellite
(5)	EIRP	dBm	23.5	30.5	23.5	30.5	=(2b)+(3)+(4)
(5b)	EIRP	dBW	-6.5	0.5	-6.5	0.5	=(2c)+(3)+(4)
(6)	送受信偏波損失	dB	0.0	0.0	0.0	0.0	
(7)	軌道高度(最小通信距離)	km	500.0	500.0	500.0	500.0	
(8)	最大通信距離	km	2080.0	1407.0	2080.0	2080.0	
(9)	仰角	deg	5.0	15.0	5.0	5.0	
(10)	伝播損失	dB	-165.9	-173.9	-165.9	-177.3	
(10b)	伝播損失(最小)	dB	-153.6	-165.0	-153.6	-165.0	
(11)	降雨損失	dB	0.0	0.0	0.0	0.0	
(40)	고 / · · - · · · · · · · · · · · · · · · ·	ī.	^ ^	~ ^	٠ ،	^ ^	TILT#16 4 5+

	I	1 1					
(5)	EIRP	dBm	23.5	30.5	23.5		=(2b)+(3)+(4)
(5b)	EIRP	dBW	-6.5	0.5	-6.5		=(2c)+(3)+(4)
(6)	送受信偏波損失	dB	0.0	0.0	0.0	0.0	
(7)	軌道高度(最小通信距離)	km	500.0	500.0	500.0	500.0	
(8)	最大通信距離	km	2080.0	1407.0	2080.0	2080.0	
(9)	仰角	deg	5.0	15.0	5.0	5.0	
(10)	伝播損失	dB	-165.9	-173.9	-165.9	-177.3	
(10b)	伝播損失(最小)	dB	-153.6	-165.0	-153.6	-165.0	
(11)	降雨損失	dB	0.0	0.0	0.0	0.0	
(12)	ポインティング損失	dB	0.0	0.0	0.0	0.0	地球指向時
(13)	受信アンテナ利得	dBi	27.0	42.6	44.8	56.2	ground station
(13b)	受信アンテナ半値幅(パラボラ)	deg	7.0	1.2	0.9	0.2	(Sendai局) 実測値
(14)	受信フィーダ損失	dB	-1.0	-1.0	-1.0	-1.0	
(15)	受信信号電力	dBm	-116.5	-101.8	-98.7	-91.7	=(5)+(6)+ (10)++(14)
(15c)	地表面電力束密度 (PFD) EL=90°	dBW/m ²	-147.5	-154.4	-147.5	-154.4	*1
(15d)	地表面電力束密度 (PFD) EL=5°	dBW/m ²	-159.9	-163.4	-159.9	-166.8	*2
(16a)	システム雑音温度	K	250	250	250	250	
(16b)	システム雑音温度	dB-K	24.0	24.0	24.0	24.0	=10log((16a))
(16c)	G/T	dB/K	2.0	17.6	19.8	31.2	=(12)++(14)-(16b)
(16d)	受信雑音電力密度	dBm/Hz	-174.6	-174.6	-174.6	-174.6	=-198.6+(16b)
(17)	C/No	dBHz	58.2	72.8	76.0	83.0	=(15)-(16d)
(17b)	C/N	dB	2.1	2.9	19.9	13.0	=(17)-10log((3c))-30
(17c)	C/N (最大)	dB	15.5	12.9	33.3	26.4	=(17b)-(10)+(10b)-(12)-(14)
(19)	変調損失	dB	0	0	0	0	
(20)	その他損失	dB	0	0	0	0	
(21)	雑音帯域幅	dBHz	53.0	66.8	53.0	66.8	10log(BRx1000)
(22)	所要S/No(Eb/No)	dB	4.4	4.4	4.4	4.4	BPSK Viterbi, BER=1e-5
(23)	所要C/No	dBHz	57.4	71.2	57.4	71.2	=(19)+(20)+(21)+(22)
(24)	回線マージン	dB	0.7	1.6	18.6	11.7	=(17)-(24)

最後に Finally

国内調整の思想 domestic license coordination

- 先の申請者の了解がないと、後の申請者の申請が認められない
 - ・干渉の考え方があいまい。
 - 周波数がかぶっても、2G、8Gなど、通信のためには明確 にアンテナを向けなければ電波はキャッチできない。
 - 同じ空を飛んでいても、干渉が起こる可能性は限りなく 低い
- early licenser is higher priority than new application
 - judge of "interference" is ambiguity
 - If the same frequencies, signals can't be affected easily when the ground antenna is not clearly pointing to satellite (especially, 2G, 8G signals)
 - Even when they are flying in same sky, the possibility of interference is really low.

国内調整の思想 domestic license coordination

- **どのような場合が「干渉」であるのか、指針が必要**である (ルールにすると、不自由にもなりうるが)
- 干渉が懸念されても、**共有していく思想が、全体の利益**にな る
- 先の申請者は、新しい申請で、後の申請者にもなりうる。お 互いに良い関係を維持することがメリット
- definition of "interference" should be guided by government (this can be inconvenient when clearly written in rules, though)
- If they can be affected each other, it's better to use by sharing limited frequencies, this can be merits for everybody.
 - early licenser can be new licenser in new applications. We need to keep good relationship each other.

マニュアルの紹介 official manuals

http://www.tele.soumu.go.jp/j/adm/freq/process/freqint/

い通信 | www.tele.soumu.go.jp/j/adm/freg/process/fregint/ 検索 総務省 一 干 戻す 申請・届出をする HOME > 電波監理の概要 > 周波数割当て・公開 > 周波数割当てプロセス・周波数の公開(国等の電波の利... > 周波数の国際調整について 電子申請 周波数の国際調整について ■1.小型衛星通信網の国際周波数調整手続きに関するマニュアル ■2.国際調整の流れ ■3.参考資料 無線局情報を探す ■1.小型衛星通信網の国際周波数調整手続きに関するマニュアル 情報検索 Myメニュー 「小型衛星通信網の国際周波数調整手続きに関するマニュアル」は小型衛星に関する衛星通信網の国際周波 数調整等を行う実務担当者向けのマニュアルです。本マニュアルには、以下の項目について記載されていま す。 よく見るページをお気に入り (1) 本書の目的 としてここに設定することが (2) 衛星通信網の国際周波数調整の目的と流れ できます (3) 衛星通信網の周波数国際調整に必要となる基礎知識 (4) 国際調整手続 (1) 事前公表資料 (API: Advance Publication Information) 提出まで 詳しくはヘルプをご覧ください (5) 国際調整 (2) 事前公表資料 (API: Advance Publication Information) 提出後 (6) アマチュア無線周波数割り当てのための手続き (7) 地球局調整 □編集□ヘルブ (8) 無線局免許申請の概要 (9) 用語集・資料集

ありがとうございました Thank you, very much

