#### Magnetic Plasma De-orbit (MPD) system using MTQs for nano-satellites

Takaya Inamori<sup>1)</sup>, <u>**Rei Kawashima<sup>2)</sup>**</u>, Phongsatorn Saisutjarit<sup>3)</sup>, Nobutada Sako<sup>4)</sup>, Hiroyuki Ohsaki<sup>1)</sup>,

 <sup>1)</sup> Department of Advanced energy, The University of Tokyo, Tokyo, Japan
 <sup>2)</sup> Department of Aeronautics and Astronautics, The University of Tokyo, Tokyo, Japan
 <sup>3)</sup> Department of Aeronautics and Astronautics, King Mongkut's University of Technology, North Bangkok, Bangkok THAILAND
 <sup>4)</sup> Canon electronics INC, Tokyo, Japan

## Contents

- Introduction
  - Space applications using nano-satellites
  - Space debris caused by nano-satellites
  - Previous satellite methods for de-orbit
- Magnetic Plasma Deorbit (MPD)
  - Concept
  - Analysis
- Numerical Simulations
  - Particle-in-cell (PIC) plasma simulation of MPD
- Conclusions

### Contents

- Introduction
  - Space applications using nano-satellites
  - Space debris caused by nano-satellites
  - Previous satellite methods for de-orbit
- Magnetic Plasma Deorbit (MPD)
  - Concept
  - Analysis
- Numerical Simulations
  - Particle-in-cell (PIC) simulation of MPD
- Conclusions

## Space applications using nano- and micro-satellites (1kg-100kg)

#### Features of nano-satellites

- Nano-satellites can be developed and launched with
  - Shorter development time.
  - Smaller costs.
- Many nano-satellites have been applied to various missions such as
  - Remote sensing.
  - Astronomical observations.

More and more nano-satellites will be developed and launched to LEO orbits.



© Nakasuka Lab. University of Tokyo

## Space debris caused by nano- and micro-satellties

- Almost all satellites
  - stay at their orbits after their missions because of small drag forces.
  - cannot install any de-orbit systems because of their strict constraints of mass and cost.

## Orbital space debris caused from these satellites are of increasing concern to all satellites.

 Nano-satellites need deorbit systems to prevent generating space debris in their orbits.

### Previous methods for the satellite de-orbit

#### **Deorbit using thrusters**

- Nano-satellites achieve the deorbit using a propulsion force.
- Nano-satellites need additional propellant for the deorbit.

#### Deorbit using an air drag force

- Nano-satellites achieve a large area and make a large air drag force in orbit with extensible structures.
- Nano-satellites need additional structures for the deorbit.



© Komurasaki Lab. University of Tokyo



Few nano- satellites have de-orbit systems, because they make nanosatellites larger mass, higher cost, and lower reliability satellites.

#### Requirements for deorbit systems in nanosatellites

## The reasons why nano-satellites cannot utilize the previous deorbit systems

- For the deorbit operation, nano-satellites need **additional** thruster, propellant, and structures.
  - larger mass,
  - higher cost,
  - lower reliability caused by complicated deorbit components.

#### **Requirements for deorbit systems**

#### Satellites

- do not need additional components (or small costs for additional components).
  - The deorbit components should not decrease the probability of mission success.
- can obtain an effective force for the deorbit to complete the operation relatively small period.

## Contents

- Introduction
  - Space applications using nano-satellites
  - Space debris caused by nano-satellites
  - Previous satellite methods for de-orbit
- Magnetic Plasma Deorbit (MPD)
  - Concept
  - Analysis
- Numerical Simulations
  - Particle-in-cell (PIC) simulation of MPD
- Conclusions

## Magnetic Plasma Deorbit (MPD) Satellite Deorbit using in-orbit Plasma

 Nano-satellite generates a magnetic moment using MTQs which interacts with the space plasma in a LEO orbit and makes a drag force.



Ikkoh Funaki - Hidenori Kojima - Hiroshi Yamakawa - Yoshinori Nakayama - Yukio Shimizu, "Laboratory Experiment of Plasma Flow Around Magnetic Sail", Astrophys Space Sci (2007) 307:63–68

- Satellites do not need to install additional components for the de-orbit operation.
  - Almost all nano-satellites generally utilize MTQs for their attitude control system.
- The proposed method can be utilized in many nano-satellites.

# Scale dependency of the proposed MPD method



more effective in smaller satellites

#### Analysis using a simple model



### Result of the analysis



Satellite
mass
10kg
MTQ
20Am<sup>2</sup>

- 2kg
- 1w

Fig. 1. Analysis results representing descend trajectories using the proposed de-orbit system.

• A satellite completes de-orbit within 2 years, if the initial altitude is lower than 650 km.

## Contents

- Introduction
  - Space applications using nano-satellites
  - Space debris caused by nano-satellites
  - Previous satellite methods for de-orbit
- Magnetic Plasma Deorbit (MPD)
  - Concept
  - Analysis
- Numerical Simulations
  - Particle-in-cell (PIC) simulation of MPD
- Conclusions

## Plasma simulation with Particle In Cell



Motion of ions around magnetic field of MTQs

#### Particle-in-cell (PIC) Method

**Rarefied fluid simulation by** tracking particles in grid system

#### **Plasma Simulation with PIC**

lons' and Electrons'

4<sup>th</sup>-order **Motion Calculation** 

**Runge-Kutta** 

Coupling

Electrostatic Field 2<sup>nd</sup>-order Poisson's

Calculation

equation solver

### Plasma drag forces calculated by PIC



#### PlaStnaadnaigeorofeisoone oraxes

ion numberateurlaition disterioution

Plasma drag forces are calculated by momentum change of ions

Drag force table is created with parameters of

- Ion number density
- Satellite velocity
- Magnetic moment

Utilized in satellite's orbit simulation

#### Numerical simulations

- Include International Standard Atmosphere model.
- Include Plasma density and drag force model obtained by the PIC simulations.



Table 1 Parameters for the numerical simulations

| Sate<br>Ilite | Size                     | 200×200<br>×200 mm |
|---------------|--------------------------|--------------------|
|               | Mass                     | 10 kg              |
| MTQ           | Magnetic<br>moment       | 20Am2              |
|               | Mass                     | 2kg                |
|               | Power<br>consumpt<br>ion | 1w                 |

A 10 kg and 650 km altitude nano-satellite completes its de-orbit operation within 2 years with a 20 Am<sup>2</sup> MTQ.

## Conclusion

- Almost all nano- satellites do not have any de-orbit systems, because they make nano-satellites larger mass, higher cost, and lower reliability satellites.
- Nano-satellite generates a magnetic moment using MTQs which interacts with space plasma and makes a drag force.
  - Satellites do not need to install any additional components for the de-orbit operation.
- A 10 kg and 650 km altitude nano-satellite completes its de-orbit operation within 2 years with a 20 Am<sup>2</sup> MTQ.

### Future works

- Shorten the MPD operation time.
  - Improve magnetic field shapes.
  - Improve orbit control methods.
- On-orbit experiments.
  - We have plans for on-orbit experiments using nano-satellites.



CubeSat "KNACKSAT" King Mongkut's University of Technology North Bangkok, Thailand



©Canon electronics INC

Questions?: takayainamori@gmail.com

## Appendix

## Comparison between proposed MPD and the previous methods

#### **Previous method**

- Deorbit using an air drag force. Nano-Satellites ...
  - Need additional extensible structures to achieve a large area in orbit.
  - Generate only a time constant force which is not useful for orbit control for other purpose such as formation flight.

#### **Proposed method**

- Deorbit using an plasma drag force. Nano-Satellites ...
  - Do not need additional structure
  - Need only MTQs for their deorbit operations.
  - Generate time-variable force which is useful for orbit control such as formation flight.

#### Effect of satellite attitude - Coil tilt angle

