# JUXTA : A New Probe of X-ray Emission from Jupiter and the Solar System

Y. Ezoe, T. Ohashi (TMU), T. Kimura, S. Kasahara, A. Yamazaki, K. Mitsuda, M. Fujimoto (ISAS/JAXA), Y. Miyoshi (Nagoya U.), G. Branduardi-Raymont (UCL)

> 5th Nano-satellite Symposium 2013 Nov 21 (Thu)

### Outline

- Introduction
  - Past X-ray studies of the Jupiter system
- JUXTA instrument
  - In-situ X-ray imaging spectroscopy of the Jupiter system
- Summary

## The Jupiter system

- Archetype for giant planets ( $x320 M_E, x11 R_E$ )
- Strong magnetic field (surface ~4 G, x500~1000 R<sub>E</sub>)
- Ejecta from a volcanic Moon lo's volcanoes
- Internal oceans in Europa, Ganymede, Callisto
- Planetary phys.
   Astrophysics
   Exoplanet phys.



# The Jupiter system

- Archetype for giant planets ( $x320 M_E, x11 R_E$ )
- Strong magnetic field (surface ~4 G, x500~1000 R<sub>E</sub>)
- Ejecta from a volcanic Moon lo's volcanoes
- Internal oceans in Europa, Ganymede, Callisto
- Planetary phys.
   Astrophysics
   Exoplanet phys.



### In the past decade or so

- X-ray studies of the Jupiter system have greatly advanced thanks to *Chandra*, *XMM*, and *Suzaku*
- Energetic particles in magnetosphere
  - tens eV~MeV e<sup>-</sup>
  - MeV/amu ion
- Reprocessing of solar radiation
  - solar X-rays
  - solar winds

Chandra Jupiter X-rays - December 18, 2000



sidereal rotation period ~10 hr

### Suzaku observation

- Japanese X-ray astronomy satellite (2005-)
  - CCDs with highest sensitivity for diffuse X-ray sources
- Discovery of diffuse X-rays from inner rad. belts
- Inverse Compton scattering by tens MeV electrons



## The way forward

- X-ray astronomy satellites orbit around Earth : limited photon statistics & spatial resolution
- No in-situ X-ray instrument so far
- The first ever in-situ X-ray observation in future Japanese exploration !

JUNO Launch 2011 Arrival 2016



JUICE Launch 2022 Arrival 2029



Japanese mission "Solar sail, JMO" proposed to be launched in ~2020's



## JUXTA (JUpiter X-ray Telescope Array)

- High photon stat. & high reso. data unattainable otherwise
  - Area :  $3 \text{ cm}^2$  @ 30 R<sub>1</sub>  $\rightarrow 24 \text{ m}^2$  @ Earth orbit
  - Reso.: 5 arcmin @ 30 R → arcsec @ Earth orbit
- Better than the gigantic X-ray astronomy satellite Athena+  $(2 m^2, 5 \text{ arcsec},$ S/C ~5 tons, 2028) as for the Jupiter system



JMO : high inclination periapsis 30 R<sub>I</sub>, apoapsis 100 R<sub>I</sub>

JUXTA

### Science themes

- I. Strong particle accelerations
  - aurora : keV e<sup>-</sup>, MeV/amu ion
  - radiation belts : tens MeV e<sup>-</sup>
- <u>2. Jupiter-satellite binary system</u>
  - Io, Europa, Ganymede ?, Callisto ?: ion
  - lo plasma torus : tens eV e<sup>-</sup>, ion
- <u>3. Rotational driven activities</u>
  - auroral pulsation : keV e<sup>-</sup>, MeV/amu ion











### Instrument requirements

| item               | requirement                                | reason                                                                                     |
|--------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|
| Energy band        | 0.3 - 2 keV                                | <ul> <li>Ion : emission lines at &lt;1 keV</li> <li>Electron : bremss &gt;1 keV</li> </ul> |
| Spatial resolution | <5 arcmin                                  | • Angular size of auroral hot spot<br>(~10 <sup>4</sup> km @ 30 R <sub>j</sub> )           |
| Energy resolution  | <100 eV at 0.6 keV                         | <ul> <li>Separate ion emission lines</li> </ul>                                            |
| Time resolution    | <1 min<br>$\rightarrow$ >3 cm <sup>2</sup> | <ul> <li>Detect periodic X-ray pulsation<br/>of aurora</li> </ul>                          |
| Field of view      | >4 deg dia.                                | • Size of Jupiter at 30 R <sub>j</sub>                                                     |

#### JUXTA

# JUXTA : baseline design

- A new light weight telescope & a radhard detector
- Size : ~25 cm cubic
- Mass : ~10 kg
- Power : ~10 W
- Count rate :
  - Jupiter : ~40 cps
  - rad. belts : ~2 cps



#### JUXTA

## JUXTA : optics

- The optics are the key to achieving the challenging science requirements under limited resources
- Breakthrough technology
   Si dry etching & smoothing
   Si dry etching
   Micromachined optics



plastic deformation





Wolter type-I optics



reflection angle < a few deg

Assembly of two wafers



Ezoe+10, Ezoe+12, patent pending

JUXTA

One traditional mirror

## JUXTA : optics

- Ultra light-weight
  area to mass : ~10 cm<sup>2</sup>/g
  High reso. & low cost
  FOV 5 degΦ, f 250 mm,
  - >3 cm<sup>2</sup>, <5 arcmin (FWHM)





20 µm line & space





400

0



13

32 mm

## JUXTA : detector

- High spectroscopic resolution under harsh radiation environment Kasahara+13 (~20 krad/y @ 20 RJ)
  - DepFET (Depleted P-channel FET)
- Pix 360 µm sq, 64 x 64, Array 17.5 mm sq, frame time 10 ms,
   <-40 deg C</li>





To be used in BepiColombo (2015) Strueder+13



# Toward JUXTA

 Light weight X-ray imaging spectrometer for micro/small sats, exploration missions, etc

everywhere in the solar system





## JUXTA Team

### Management

- PI : Y. Ezoe (TMU)
- T. Kimura (ISAS)
- A. Yamazaki (ISAS)
- K. Mitsuda (ISAS)
- M. Fujimoto (ISAS)

### Telescope

- I. Mitsuishi (TMU)
- Y. Ezoe (TMU)
- K. Mitsuda (ISAS)

### Science

- T. Kimura (ISAS)
- K. Ishikawa (TMU)
- Y. Miyoshi (Nagoya Uni.)
- G. Branduardi-Raymont (UCL)

### Detector

- L. Strueder (PNsensors)
- S. Kasahara (ISAS)
- A. Yamazaki (ISAS)

### Summary

- X-ray emission from Jupiter, its Moons, lo torus and radiation belts has been discovered
- In-situ X-ray observations have a potential to revolutionarize solar system physics
  - particle accelerations
  - Jupiter-satellite binary system
  - rotational driven activities
- JUXTA aims at the first in-situ X-ray imaging spectroscopy of the Jupiter system