

International Workshop on Small-Scale Satellite Testing Standardization Quick Summary

Mengu Cho

Laboratory of Spacecraft Environment Interaction Engineering

Kyushu Institute of Technology

Kitakyushu, Japan

November 19, 2013

Overview

60 participants (23 from abroad)

What we talked

- Hot topic within ISO/SC14 (space system) about
 - Safety, Debris mitigation, Reliability of small satellites
- Needs of small satellite top-level standard to define
 - What is small satellite? (small/micro/mini/nano/pico/femto/--)
 - Among the standards made for traditional satellites,
 - Standards to be adapted as it is
 - Standards to be tailored
 - Standards to be developed
 - Some actions will be taken toward ISO/SC14 plenary meeting at Tokyo in May 2014
- Discussion on working draft ver.3 of "Space systems Design Qualification and Acceptance Tests of Small-scale Satellite and Units Seeking Low-cost and Fast-Delivery"
- Working draft and proceeding will be available from
 - <u>http://cent.ele.kyutech.ac.jp/nets_web/nets_web.html</u>
 - Or Google "nanosatellite environment"
- Give me your business card if you want to join the activity

Reliability Growth of Small-scale Satellites through Testing: Monte Carlo Simulation

Mengu Cho

Laboratory of Spacecraft Environment Interaction Engineering

Kyushu Institute of Technology

Kitakyushu, Japan

November 20, 2013 5th Nanosatellite Symposium, Tokyo, Japan **Basic Questions**

Why do we test?

How far should we do test?

Reliability Growth Due to Testing

- During the process of testing, defects are found. Modifications are made to design, manufacturing, material etc.
- As a result, the defect detection rate during the test decreases

Reliability growth and Weibull distribution

• According to Duane, the fault rate has the following time dependence in the process of reliability growth

• Probability of no failure from time zero to time t is given by the following (Poisson process)

$$R(t) = \exp\left(-\int_{0}^{t} \lambda(t') dt'\right) = \exp\left(-\left(\frac{t}{\alpha}\right)^{\beta}\right)$$

Weibull distribution

Weibull distribution

$$R(t) = \exp\left(-\left(\frac{t}{\alpha}\right)^{\beta}\right)$$

R(t): reliability α: scale parameter β: shape parameter

Reliability in orbit

• According to Saleh et al., reliability of satellite can be approximated by Weibull distribution

Saleh, J. H., and Caste J. F., Spacecraft Reliability and Multi-State Failures, Wiley, 2011

Operation in orbit can be regarded as continuation of testing without opportunity of modification.

Purpose of this study

- Failure of small-scale satellites governed by infant mortality
- Testing is not enough to improve the reliability up to a point where the random failure of individual subsystem/unit/parts dominates

- How is the reliability improved by testing?
- Testing strategy to optimize the schedule (i.e. cost) against the reliability

"Small-scale" satellite

- The small size of the satellite is a mere result of seeking the lowcost and fast delivery
- This work is applied to the satellites whose development methods are different from the conventional satellites where the reliability often precedes the cost and schedule
- Meaningless to limit the scope based on specific categories of satellite size such as micro-, nano- and pico-
 - Definitions are not yet agreed internationally
- A word of "small-scale" is used throughout this work

See the discussion of small-scale satellite testing standard

11

Large/medium Small/micro/nano/pico

Reliability growth simulation

- Assume satellite is made of N subsystem
- Tests are done in two steps (QT and AT)
- Each subsystem has the following latent defect rate

$$\lambda(t) = \frac{\beta_{DQ}}{\alpha_{DQ}^{\beta}} t^{\beta_{DQ}-1} + \lambda_r \qquad \text{QT}$$

$$\lambda(t) = \frac{\beta_{DA}}{\alpha_{DA}^{\beta}} t^{\beta_{DA}-1} + \frac{\beta_{W}}{\alpha_{W}^{\beta}} t^{\beta_{W}-1} + \lambda_{r} \qquad \text{AT}$$

- α_D, β_D : failure due to design
 - Q: during QT, A: during AT
- α_W, β_W : failure due to workmanship
- λ_r : random failure
- Probability of detecting a defect during the testing of time T

$$R(T) = \exp\left(-\int_{0}^{T} \lambda(t') dt'\right)$$
 12

Reliability growth simulation

- Whether we find a defect or not is determined by a random number
- Once a defect is found, depending on whether it is due to design, workmanship or random failure, QT or AT are redone
- As the defect is corrected, we modify α and β
 - We made α bigger after each modification
- Continue simulation until we finish AT without detecting defect
- Reliability after orbit insertion (probability of no failure) of subsystem i is given by the following $\begin{pmatrix} t \\ t \end{pmatrix}$

$$R_i(t) = \exp\left(-\int_0^{\infty} \lambda(t') dt'\right)$$

• But, $\lambda(t)$ is already improved. It is given by

$$\lambda(t) = \frac{\beta_{DA}}{\alpha_{DA}^{\beta}} \left(t + t_{cD}\right)^{\beta_{DA}-1} + \frac{\beta_{W}}{\alpha_{W}^{\beta}} \left(t + t_{cW}\right)^{\beta_{W}-1} + \lambda_{r}$$

- t_{cD} , t_{cW} : The elapsed time since the last modification was made on the design or the workmanship
- The total reliability is $R(t) = R_1(t) \cdot R_2(t) \cdots R_{N-1}(t) \cdot R_N(t)$ For detail, read the paper

Simulation result example

Simulation result example

Reliability after launch follows Weibull distribution

15

Simulation result example

Results of 1,000 runs with different random numbers

Compare the reliability at 45 days after launch

Unit test time

- Unit test time corresponds to how extensively we test
 Example: Number of thermal cycles
- Short test time
 - Many cycles of finding and repairing defect
 - Risk of overlooking the defects

VS

- Long test time
 - High rate of defects detection
 - Expensive

Simulation results

Shorter unit test time gives the higher reliability at the same total test time

Simulation results

Reliability after launch

Simulation results

Strategy	Unit test time	Average R	Average R/ Average Tt	$Max(R)/Max(T_t)$
AT+QT	25	0.32	0.00304	0.00221
AT+QT	50	0.46	0.00179	0.00095
PFT	100	0.55	0.00162	0.00064
AT+QT	100	0.61	0.00096	0.00054
PFT	200	0.70	0.00073	0.00021
AT+QT	200	0.75	0.00045	0.00024

R: Reliability at 45 days after launch T_t : Total testing time

Although the average R is the smallest, the shortest unit time has the most effective testing strategy

Conclusion

- Monte Carlo simulation of reliability growth of smallscale satellite via testing
- Repeating short cycles of testing is effective to achieve relative high reliability with less testing time
 - If we can accept the relatively low reliability
- Future works
 - Realistic numbers of α and β
 - Include cost associated with fixing each defect
 - and many mores