300 Mbps Downlink Communications from 50kg Class Small Satellites

Hirobumi Saito
Japan Aerospace Exploration Agency (JAXA),
Institute of Space and Astronautical Science (ISAS)

Naohiko Iwakiri, Atsushi Tomiki, Takahide Mizuno, Hiromi Watanabe, Tomoya Fukami, Osamu Shigeta, Hitoshi Nunomura, Yasuaki Kanda, Kaname Kojima, Takahiro Shinke, and Toshiki Kumazawa
Contents

1. Purpose: 320Mbps down link for small sat
2. Onboard segment: high efficiency transmitter. small antenna
3. Ground segment: 3.8m S/X band antenna powerful receiver
4. Total simulation: SPW software + link calculation
5. EM test finished. FM maunfacturing now.
Limits of Small Satellites for Earth Observations

• Mass Limit (<100kg), Power Limit (<100W)
 — Sensor Resolution (5m vs. 0.5m)

 — Down link Speed (10Mbps vs. 800Mbps)

• What is the Bottleneck of Down Link Speed?
 — Power!
Down link bit rate VS. satellite mass for low earth orbit.

Satellite Mass (kg) vs. Down Link Bit Rate (bps)
High Speed Down Link for Small Sat

• Purpose of This Research:
 High-speed Down Link System with Low Power Consumption

—Goal

 50kg Sat @600km orbit
 DC power <20W, 320Mbps
 Small Ground Antenna < 4m
System block diagram of high-data-rate downlink.
Performance of High - Data - Rate Down Link

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Mass (g)</th>
<th>Power (W)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmitter</td>
<td>1330</td>
<td>18</td>
<td>16QAM, 348Mbps, GaN Power Amp.</td>
</tr>
<tr>
<td>Antenna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGA</td>
<td>69</td>
<td>0</td>
<td>13.5 dBi</td>
</tr>
<tr>
<td>Iso-flux</td>
<td>150</td>
<td>0</td>
<td>5dBi(60°), -2dBi(0°)</td>
</tr>
<tr>
<td>Ground Station</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna</td>
<td>3.8m Dia. S/X Cassegrain, 47.5dBi(X), 36dBi(S), Sys. Noise temp. 100K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demodulator</td>
<td>100Msps</td>
<td>(348-144Mbps), 16QAM, QPSK</td>
<td>SCCC Turbo Equalizer CCSDS 131.2-B-1</td>
</tr>
</tbody>
</table>
High-Speed 16QAM Down Link with Nonlinear Amplifier

Input IQ Constellation

Nonlinear Amplifier

Output I-Q Constellation

1 symbol transmits 4 bits

AM & PM Distortion

Inter Symbol Interference

High efficiency RF amplifier may degrade bit error rate
Digital Pre-distortion compensates Nonlinearity

Pre-Distortion

Nonlinear RF amplifier

Pulse Shape Filter

AM compensation

PM compensation

Mod

RF out

Small Distortion

Coordinate transformation
Rectangular to Polar

14bit

AM-AM LUT

AM-PM LUT

Coordinate transformation
Polar to Rectangular

14bit
X Band Power Amplifiers

<table>
<thead>
<tr>
<th>Amplifier</th>
<th>GaAs AB</th>
<th>GaN AB</th>
<th>GaN F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Power</td>
<td>38dBm</td>
<td>37dBm</td>
<td>36dBm</td>
</tr>
<tr>
<td>Maximum Gain</td>
<td>10dB</td>
<td>11dB</td>
<td>12dB</td>
</tr>
<tr>
<td>Maximum PAE</td>
<td>37%</td>
<td>46%</td>
<td>60%</td>
</tr>
<tr>
<td>PAE at 3dB OBO</td>
<td>23%</td>
<td>36%</td>
<td>38%</td>
</tr>
<tr>
<td>Maximum Phase Shift</td>
<td>10°</td>
<td>-2°</td>
<td>-34°</td>
</tr>
</tbody>
</table>

Newly Developed 2W GaN HEMT AB Class
AM/AM

GaAs (A)

GaAs (A)

GaAs (A)

AM/PM

IQ Constellation

Without Pre-distortion

GaN (AB)

GaN (F)

With Pre-distortion

Pre-distortion

⇒
EM of 348 Mbps Transmitter

Modulation: 16QAM/QPSK
Mass: 1330g
RF Power: 2W
DC Power: 20W
AM-AM, AM-PM Characteristics

X-band Transmitter (EM)

Efficiency (PAE) 47% (PA, GaN-HEMT)
Output Backoff 2dB
Phase Shift 2 deg (average)

![Graph showing EM Input-Output characteristics](image)

EM Input-Phase shift characteristics

![Graph showing EM Input-Phase shift characteristics](image)
16QAM I/Q Constellation @ 33dBm
(EM RF block)

Without Predistortion

With Predistortion

Inner Points Improved By predistortion

(a) Without pre-distortion

(b) With pre-distortion
16QAM I/Q Constellation @ 33dBm (PM RF+Digital)

Without Predistortion

Obtained from the prototype model of transmitter without predistortion. RF output power = 33 dBm.
Bit Error Rate v.s. Eb/No

EM RF Block, uncoded 16QAM

When Uncoded BER < 5 \times 10^{-2} at \frac{E_b}{N_0} = 10 \text{dB}, SCCC + Turbo Equalizer / Deoder achieves BER < 10^{-6}.
Onboard Small Antenna

Body-Fixed Medium Gain Antenna

14 dBi, 68g

14 dBi, 68g, 7x7cm

3.8m Ground Station

For 320Mbps high bit rate mode,
Satellite points earth station
Onboard Small Antenna

Body-Fixed Iso-flux Antenna

5dBi max, 150g

Quadrafilar helix
150g, D=10mm, H=20m

For Earth-Pointing Satellite, Antenna pattern compensates range variation
Ground Antenna

3.8m Ground Antenna for S / X Band

S band : Telemetry & Command
X band : Mission Data Down Link (320Mbps)

Ring-Focus Cassegrain

S-band Corrugated Horn
X-band Dielectric Rod

Sub-reflector
Secondary Focus (System Focus)
Primary Focus (Ring Focus)
Block diagram of high-data-rate downlink and ground receiver

Transmitter

- Packet generator
- SRRC filter
- Pre-distortion
- Power amplifier
- RF BPF

Receiver

- Complex NCO
- Loop filter
- Phase detector

Frequency tracking loop (FTL)

- Signal resampler
- Matched filter

Timing tracking loop (TTL)

- Signal searcher
- Loop filter
- Timing detector

Developing 400Mbps 16QAM ground receiver
Block diagram of high-data-rate downlink and ground receiver
Simulation

Required \(Eb/N0\) for BER = 10^{-6}

- GaN AB Amplifier without pre-distortion
- 16QAM
- QPSK

 linear channel

CCSDS 131.0 SCCC
Link margin of high-data-rate down
(2W GaN HEMT of AB class with pre-distortion)
Project Schedule

Onboard Transmitter
- ’13 June T EM test
- ’13 June-Sep. FM manufacturing
- ’13 Oct. PM test
- ’13 Nov. FM test

Ground Antenna
- ’13 March Installation

Ground Receiver
- ’13 Nov.-Dec. Front-End install
- ’14 Feb. Complete (collimation test)

Hodoyoshi - #4 (60kg) Launch
- ’14 March by Dnepr
- ’14 Demonstration 320Mbps 16QAM test on orbit

Now!
Goal!
Conclusions

1. Developing 320Mbps 16QAM down link for 50kg satellite.
2. Power-efficient transmitter
 (GaN HEMT amp with predistortion)
 small antenna (MGA, isoflux)
3. Small ground antenna,
 powerful receiver (turbo equalizer & decoding)
4. On-board demonstration in 2014 with 50kg sat.
Advanced Mission - 100kg SAR Satellite -

- Deployable, Rectangular, Slot Array Antenna with Waveguide Feeder
- Compact stow volume 0.7x0.7x0.7m
- Front panel: SAR antenna
- Rear panel: Flexible Solar Cell
Deployable Slot Array Antenna

(a) Backside and Waveguide Feeder
(b) Slot Array Antenna Panel
(Feeder is removed)