On-Orbit Thermal Analysis of High Voltage Technology Demonstration Satellite, HORYU-II

UN/Japan Nano-Satellite Symposium October 10-13, 2012 Yuki Seri, Akimitsu Hamada, Masui Hirokazu, Mengu Cho *Kyushu Institute of Technology*

1

Background/Objectives

	Large satellite	Nano-satellite	
Maker	Country, Company	Company, University etc	
Mass	<i>>O</i> (100kg)	Less than 50kg	Affected easily by the external environment
Power	High	Low	
Cost	Expensive	Cheap	It consists of COTS*.
Due date	long	short	

The acceptance temperature range of COTS* is narrow.

The thermal control of the whole system is necessary.

Examination of the thermal design of HORYU-II

*COTS : Commercial Off The Shelf

HORYU-II

fo o o o by	Monopo x z	ble ar	
	Size	350×310×315mm	
	Mass	7.1kg	
	Design Life Time	1 year	
	Orbit	Sun-synchronous polar orbit	Centered pillar type
	Altitude	670km	

Main mission : 300V photovoltaic power generation

Already succeeded in the mission.

The highest photovoltaic power generation in the world 3

Thermal design

■ HORYU-II is fundamentally a passive thermal control.

- ±Y surfaces : Z306(Black paint) α=0.96, ε=0.87
 Heat exchange
- ±X, Z surfaces : Arojin treatment α=0.1, ε=0.03
 Heat insulation
- The inside of the battery box is insulated by a glass epoxyBattery heater

System	Permissive temperature range	Battery pack
OBC	-20 ~ +70 °C	
COM	-10 ~ +60 °C	
Battery	0 ∼ +45 °C	
Mission	-15 ~ +50 °C	Battery how
		Glass epoxy

Attitude control

- HORYU-II is controlled only by magnetic field alignment
- A hysteresis dumper attenuates libration motion

By analysis,

two full rotations per one orbit around the Earth. 5

Thermal Mathematical Model

Thermal Analysis Result

Uncertain factorsSpace environmentAttitude(Rotation speed)

The worst case analysis

Worst Cold : the sunlight hardly enters $\pm Y$ surfaces. Worst Hot : the sunlight mostly enters $\pm Y$ surfaces.

Analysis result

	Worst C	cold (°C)	Worst Hot (°C)		
	Min.	Max.	Min.	Max.	
External panel	-30	24	-14	53	
Internal pole	-4.5	5	15	29	
COM	-3	5.5	17	29	
Battery	1.9	2.4	23	24	

Telemetry Data

Data sampling period : 10min(600sec)

Orbital period of HORYU-II : 98min

We can get about 10 data per orbit.

This sampling rate was not enough to calculate the satellite attitude

We tried to determine the attitude from the orbit data of temperature changes.

- External panels unstable temperature change
 Inside stable temperature change

We focused on the temperature of COM* and tried to match the model calculation temperature with the on-orbit temperature.

*COM : communications (RF radio)

Gyro Sensor

Immediately after the separation <u>more than 10 deg/sec</u>

the hysteresis dumper and the long monopole antenna attenuated the rotations.

⊖ Gyro X - Gyro Y -----Gyro 2.5 On July 25, 2012 Axis Angular Velocity, deg/sec A rotation of HORYU-II seems to be stable. Axis **Root Mean Square** 0.38 deg/sec X Y 1.36 deg/sec -1 50 0 100 150 200 250 300 Time, min 1.04 deg/sec Ζ 5/187/2 5/29 7/137/25 6/96/21JST, Day

Temperature of COM

Temperature of X panels

The variation of temperature change given by TD is narrower than the on-orbit data.

*TD : Thermal Desktop

Parametric analysis

Angular Velocity (deg/sec)			COM (°C)		+X surface (°C)		-X surface (°C)	
X Axis	Y Axis	Z Axis	Min.	Max.	Min.	Max.	Min.	Max.
0.38	1.36	1.04	6	14	-5	13	7	22
0.38	2.36	1.04	6.2	14.7	-4	14	8	23
0.38	1.36	2.04	5.5	14.8	-4	16	6	21
0.38	2.36	2.04	6	15.2	-4	16	6	22
0.38	1.36	2.5	6.3	15	-4	14	7	23.5
0	1.36	1.04	6.5	15.5	-4	15	8	24

Too many possible combinations of rotating speed in 3 axes. Therefore, defining a unique combination of rotating speed is difficult from the information obtained at present.

On-orbit temperature data

-5

Time, min

Compared with On-orbit data

The on-orbit temperature was within the temperature range we predicted in the thermal analysis. The thermal design of HORYU-II was appropriate.

KIT Satellite Horyu2

Conclusions and Future tasks

- Conclusions
- \checkmark We could conduct thermal analysis by Thermal Desktop.
- ✓ We could confirm a soundness of the thermal design of HORYU-II from the on-orbit temperature data.
- Future tasks
- ✓ Specifying the attitude of HORYU-II under the influence of magnetic field.
- ✓ Check the influence of the long monopole antenna on the rotation attenuation.

Thank you for your attention.

Appendix

Thermal environment

Sunlight

Eclipse

Thermal design

HORYU-II

HORYU-II

HOYRU-II

HORYU-II

23

Gyro Sensor

Hysteresis dumper

The principle to attenuate librational motion

HORYU-II perform libration motion along the geomagnetism

Control of magnetic field alignment

Thermal Analysis Software

<u>Thermal Desktop®</u>

- (Cullimore and Ring Technologies corporation)
- With AutoCAD making a Thermal Mathematical Model
- Making thermal networks
- Steady-state/Transient analysis(Parametric analysis)

As a thermal design and a thermal analysis tool, Thermal Desktop is used by NASA development projects and so reliable.

Worst Hot – Analysis result

KIT Satellite Horyu2

Worst Cold – Analysis result

29

Worst Cold – Analysis result

A temperature change of $\pm X$ panels transfers to the internal components by thermal conduction through center pillars.