

Microsatellites

moving from research to constellations meeting real operational missions

Professor Sir Martin Sweeting FRS

Director, Surrey Space Centre Executive Chairman, SSTL

What are 'Small Satellites'?

= f (Mass + Time + Cost + Utility)

Innovative use of the latest technologies

What are 'Small Satellites'?

	Mass	Cost	Time
Large	1000kg+	\$300M+	10yrs+
Small	>1000kg	\$50M	3yrs
Mini	250kg	\$35M	2yrs
Micro	100kg	\$15M	1-2yrs
Nano	1-10kg	\$5M	~1 yr
Pico	100gm	> \$100k	>1yr

Small satellites and technology?

By exploiting enormous commercial investments, we can now build highly capable small, low-cost and reliable satellites built using the latest COTS terrestrial technologies...

Changing the Economics of Space

Moore's Law

Electronics, Volume 38, Number 8, April 19, 1965 "Cramming more components onto integrated circuits"

Intel co-founder Gordon Moore observed that the number of transistors on a chip was increasing exponentially: doubling every two years – or 10 times every 6.5 years

Moore's Law has held for 40 years

CPU transistor counts 1971-2008 & Moore's Law

©SSTL

Implications

Almost every measure of the capabilities of digital electronic devices is strongly linked to Moore's law:

processing speed, memory capacity... and the number of pixels in digital cameras

Revolution in manufacturing process

The enormous commercial market for industrial and consumer electronics has driven manufacturing processes for:

- high volume, density
- Iow unit cost
- high reliability

This has resulted in dramatically reduced component failure rates

COTS has become the new 'Hi-Rel'

SOURCE: Quality Magazine (Plum, 1990, p.53).

What are the questions?

Technology advances enables us to make satellite subsystems smaller and smaller...

Reduced mass beyond a certain point becomes largely irrelevant – whereas smaller <u>volumes</u> means that we run into limitations placed by the laws of physics...

- Very limited surface area for power generation
- Limited RF power available for bulk data transfer
- Limited propellant for orbit changing dV
- Limited aperture for instruments restrict resolution & s/n

This begins to restrict applications – a tiny satellite platform and a large instrument makes little sense

What has been the Surrey Experience?

How did it start?

What can mini / micro / nano-satellites do?

How did it become sustainable?

Where are the markets?

Where is it going....?

Space @ Surrey ... in the beginning

A hobby that turned into research ... and then into a business 1970 – 1985: 5 years tracking satellites and then built 2 microsatellites

How to continue...

UoSAT-1 funded from donations from industry, AMSAT, govt, volunteers (~£250k 1981)

UoSAT-2 funded by UoS (~£0.5M in 1984) - but could not repeat this investment

Surrey needed to establish a commercial company to attract & handle external funding to build satellites

SSTL formed in 1985

Wholly-owned by UoS

Objective: to fund academic research in small satellites at Surrey

"fast-forward" to 2010...

Space @ Surrey today....

Surrey Space Centre: formed in 1979 at the University of Surrey, pioneering microsatellites — now 100 academic researchers specialising in space engineering.

SSTL: commercial company spun out from the University in 1985 to exploit the fruits of SSC research

SSC+SSTL: achieving a synergy of academic research and commercial exploitation

Space at Surrey - research ≤

Academic space research... Looking over the horizon...

Antennas & RF systems

Astrodynamics

Autonomy in Space

Control systems

Embedded systems

Planetary Environments

Propulsion

Remote Sensing

Satellite systems

Signal Processing

Space Robotics

100 academic researchers Multi-disciplinary Systems-oriented Harsh environments

Robotic Space Exploration

- Bio-inspired drill for planetary missions
- RDV and Docking/ Teleoperation, on-orbit servicing
- Mars Unmanned Aerial Vehicle (UAV)

 $M_1(X_1Y_1)$

ESA and PPARC funded ExoMars rover studies

- Micro-Rovers, traction control, tracked and legged vehicles
- Entry Descent and Landing systems (EDLS)

Space Vehicle Attitude Control

- CMGs for agility/stability
- Combined attitude control/energy storage
- Underactuated control
- EM levitation, magnetic bearings
- Optical laser ISL control
- Quad-rotor aerobot
- Solar sails/kites
- Electrostatic formation flying
- Lorentz force formation flying

esa

Space Vehicle Orbit control

Electro-thermal Resistojets (xenon, butane, nitrous oxide)

Hybrids (hydrogen peroxide)

PPT Thruster

- Hollow Cathode Thruster
- Helicon Double Layer Thruster
- Field Emission Electric Thruster
- Solar Thermal Thruster
- Monopropellant Thruster

Space Remote Sensing

SAR feature extraction

SAR material classification

Thermal IR imaging

- Hyperspectral remote sensing instrument for vegetation stress monitoring
- low-cost, low-mass Infra-Red optical systems
- low-cost Ozone monitor, and analysis of its flight results
- Low cost Ozone and SO2 monitoring
- SAR feature extraction and materials clasification from double reflections
- Bi/multi-static L/X SAR
- Intelligent on-board image processing for change detection
- Optical feature detection through image sequences
- topside ionospheric sounding concepts
- GPS Reflectometry for sea-state monitoring (bi-static SAR scattering)

Space Weather

- Miniature radiation monitors, environment and effects research
- The effects of the space radiation environment on modern COTS components
- 22 instruments flown on SSTL satellites over 28 years in LEO and MEO
- Characterising the MEO for Galileo

RF & OBDH & Nanosatellites

High-Efficiency MMIC Class-E GaN Power Amplifier

High-Efficiency MMIC Class-F GaN Power Amplifier

RF and Antenna Systems

- Novel Smart Antennas
- Active, Integrated Antennas
- RF/Microwave
- Power Amplifiers
- Nano/Pico-Satellite Comms.

On-Board Data Handling Systems

- Distributed computing for satellite clusters
- Reconfigurable System-on-a-Chip
- SPACEWIRE, Robust Architectures
- Optimisation of IEEE 802.11 for ISLs
- Wireless Sensor Networks
- Integrated Image Processing

(a) Front view of the array (b) Back view of the array Beam-Switching Smart Antenna

Academic space training

Space Degree Courses at Surrey

- Space Technology & Planetary Exploration (BEng/MEng)
- Physics with Spacecraft Technology (BSc/MPhys)
- Aerospace Engineering (BEng/MEng)
- Space Technology & Planetary Exploration (MSc)
- Satellite Communications Engineering (MSc)
- Mobile & Satellite Comms. Engineering (MSc)
- Satellite Engineering (MSc)

Short Courses for Industry, KHTT Training, Outreach

SSTL – space business

SSTL, formed in 1985, employs 320 staff in the UK & USA. Primary shareholder since 2009 is EADS Astrium with Surrey University

Application of small satellites to real needs... at affordable costs Stimulating sustainable business opportunities

Since 1981....

- 34 Satellites launched
- >200 satellite-years on-orbit experience

100% mission success in last 10 years – all delivered on time & in budget

Question: if they are so small and low cost, then they cannot do anything useful...?

- Communications
- Technology Verification
- Earth Observation
- Space Science
- Navigation
- Military & Civil applications

Indeed, they can do some things that are not practical with large satellites!

LEO Communications

- Digital S&F 'email' comms to remote regions
- Early 'internet' (1990's)
- Advanced DSP payloads
- Signal monitoring & analysis
- Single satellite provides global reach

French ESSIAM system

•

•

Technology Verification

Research

CFESat

Mission detects broad-band emission from different types of lightning

Flight experiment of LANL's new FPGAbased software radio for VHF/UHF spectrum monitoring

Launched on USAF ATLAS EELV Cape Canaveral March 2007

Microsatellites & the Internet...

UoSAT-12: the first civil satellite to have an Internet address (1999)

UK-DMC: carrying a Cisco router demonstrated the power of microsatellites + internet

VMOC: an IP- based application for satellites, using an available IP-based infrastructure – first demonstrated using UK-DMC to USAF at VAFB in 2004

Space Weather

SURR

The effects of the space radiation environment on modern COTS components

GALILEO: Navigation for ESA

SSTL

- To secure Europe's Galileo navigation system
- Built by SSTL in 30 months, \$30M, launched on time; 660kg
- Now in 5th year exceeding its 2.5 years planned operational lifetime
- Awarded 14 satellites for FOC with OHB (DL)

International co-operation

Korea

Portugal

Kazakhstan

Thailano

- Train engineers as nucleus of a space agency & industry
- Launch first national microsatellite & demonstrate its applications & utility
- Establish national space facilities & capabilities
- Create new space SMEs
- Six space agencies trained and at least 3 space SMEs

DSSTL

Constellations & Swarms

'Constellations' and 'Swarms' of small satellites enable an affordable capability to achieve:

- Rapid revisit increased temporal resolution
- Contemporaneous data gathering data merging
- Particularly for Earth Observation

The evolution of EO microsatellites

1980's experimental research

- UoSAT-1
- UoSAT-2

1990's experimental proof-of-concept

- UoSAT-5, UoSAT-12
- KITSAT-1, KITSAT-2, KITSAT-3
- ThaiPhatt, FASat-B, TiungSAT-1, PoSAT-1
- Tsinghua-1, SunSAT-1

2000 demonstration

- BIRD
- PROBA
- LAPAN-TUBSAT

2005 operational

- DMC: Alsat-1, Beijing-1, BILSAT-1 NigeriaSat-1, UK-DMC
- RapidEye (x5)

Disaster Monitoring Constellation

Novel International Collaboration – 6 countries

- ★ Individual satellite ownership
- ★ Collaborative operation
- ★ Data sharing and exchange
- Daily imaging worldwide (600km swaths)
- ★ National, disaster and commercial use

The whole is greater than the sum of the parts – global daily imaging

DMC: Large area imaging

SURRE

DMC – applications

Multispectral imagery at 32m GSD

Deforestation & Land Cover

Flooding, disaster response

Global Science, Climate change

Fires: prediction, tracking

DMC – applications

De-forestation

SURRE

Mineral deposits

DMC: Responsive imaging

DMC in the International Charter

 International charter space and major disasters

2005-2008 DMC has:

- responded to 93 activations
- with 332 wide-area images
- Major campaigns in 2008:
 - Floods in Southern Africa
 - Earthquake in China
 - Cyclone in Myanmar

High Resolution Imaging

Small section of 3,000 km strip at 4-m GSD pan from Beijing-1 microsatellite

Data Fusion: simultaneous MS & PAN

High resolution UK TOPSAT

SURR

TopSat 2.8m GSD Pan 5.6m GSD 3-band Multispectral (RGB)

2011

2012

<mark>2013</mark>

Sustainability - DMC 'Road-Map'

- DMC 1: first generation with 32m GSD m/s & 600km wide swath (4m GSD pan on Beijing-1), in orbit since 2003
- DMC 2: current generation providing 650 km 'wide-swath' 22m GSD m/s resolution, in orbit since mid-2009; 2.5m GSD pan for launch in 2010 (NigeriaSat-2)
- DMC 3: next generation with ~1.5-metres GSD pan and 5m m/s
- DMC 4: hyperspectral imaging

DMC 5: SAR to provide all-weather, day-&-night coverage

DMC – 2nd generation launched

29 July 2009 - successful launch of UK-DMC2 and Deimos-1

SURR

Urban development

agriculture & precision farming

Commercial exploitation

Commercial exploitation of EO satellites in DMC Returning revenues to DMC partners (~\$3M pa) Stimulating new space business

RapidEye geo facts turned into knowledge

Within 24 hours, the constellation of 5 satellites revolves around the earth 15 times.

Five RapidEye satellites launched August 2008

First commercial EO constellation

MDA JENA SSTL

http://www.rapideye.de

NigeriaSat-2: high resolution DMC-2

launch in 2010

- 2.5m PAN
- 5m 4-band multispectral
- Medium-Res Imager, 32m
 4-band multispectral 320km swath
- 7 year life
- Agile imaging modes
- 2T-bit onboard storage
- 200 Mbps X-band downlink
- 150,000 sq.km per day

DMC 4: Hyperspectral - CHRIS Instrument

High-resolution sub-1m EO mission

0.75-m GSD pan imagery with high speed downlink and 45deg fast slew off-pointing

Is it sustainable?

2008-9 : "One Year, Seven Satellites"

2010: 5 further satellites to be launched:

- NigeriaSat-2 (2.5m, 5m, 32m) plus NX
- Russia Vniiem "Kanopus" (3 satellite platforms)
- Canadian surveillance of space mission (Sapphire)
- A rapid-pace 10 month mission
- EO satellite for Kazakhstan working with ASTRIUM
- GEO & EO for Sri Lanka
- Galileo FOC 14 navigation satellites/payloads with OHB for EC

So, are we following Moore's Law?

Early microsatellite EO missions

- Poor location / timing
- Poor pointing control
- Necessitated the use or 2-D arrays, limited swath

Later missions improved attitude control & used GPS positioning

GSD trend

Follows Moore's Law (or better)

But it is not just GSD...

EO missions also drive data volume

Two orders of magnitude improvement per decade

- data return
- data storage

"Moore's law of microsats"

Moore's law is the key

Microsatellite mission data rates (Mbps) and data volumes (kbyte) generally tracking "Moore's Law" (or better)...

data rates (Mbps) - v- year

data volumes (kbytes) -v- year

What are the implications for nanosats?

A business has been shown for micro-minisats in the range of 50-300 kg..

But what about <10kg nanosats?

Nanosatellites – Cubesats...

~100 universities worldwide now have nanosat projects of some sort

SNAP-1 nanosatellite mission 2000

SNAP-1 orbit manoeuvres

What type of applications?

In-orbit inspection – awareness

Space debris removal

Passive sensing – bi-static radar, signal analysis

Spatial/temporal sampling of geoplasmas

Robotic assembly in orbit of larger structures

Ocean monitoring...

GPS reflectometry

To measure ocean surface roughness (sea-state)

Subject of several SSC PhDs in collaboration with SSTL

Next Generation Space Telescope

Future space telescopes with aperture diameter of over 20 metres will require assembly in space

High-precision formation flying has very high cost and may not be able to maintain stable alignment over long periods of time

Autonomous assembly is a key enabler for lower cost approact to large telescopes

Stage 1: secondary mirror deployment and initial imaging

Stage 2: imaging with multiple mirrors

Mission Concept

Stage 3: Separation and re-docking of one mirror. Test and verification of reassembled mirror.

Mission Concept

Stage 4a: Undocking and separation of four satellites.

Mission Concept

Stage 4b: Docking in long baseline configuration – increased spatial resolution.

and beyond.....

for small satellites.....

©SSTI

MoonLITE: UK mission to Moon

A **polar orbiter** for communication, positioning plus orbital remote sensing

Multiple micro-

for both far-side and near-side deployment and insitu geophysics & geochemistry

Birbeck Imperial MSSL OU QinetiQ PSSRI Leicester SSC SSTL UCL

19 universities from 10 European countries

SSTL Responsible for:

- Project Management on behalf of ESA
- System Design lead
- Mentoring/guidance for student teams
- Builds on MoonLITE and Chandrayaan-1 experience

Conclusions?

micro / mini-satellites have successful business model – but it took almost 20 years to establish!

Capabilities primarily constrained by technology development

Nano-satellites are still in their infancy and the business model constrained by laws of physics rather than technology at present

Needs some innovative 'out-of-the-box' servicelevel applications/business model ideas

Small satellites

'Changing the Economics of Space'...