

National Authority for Remote Sensing and Space Sciences Design and Implementation of a Pico Satellite

Egycubsat-1

The First Egyptian NanoSatellite

Prof. Dr. Amal Zaki Prof. Dr. Ayman ElDessouki

Is the organization responsible for the Space activities and remote sensing research in Egypt .NARSS is part of the Ministry of Scientific Research in Egypt. Remote Sensing activities started in Egypt since the 1970's. NARSS was established in 1991. NARSS is composed of 8 scientific divisions and is also implementing the Egyptian Space program.

VISION

•NARSS is looking forward to become one of the best scientific agencies locally, regionally, and internationally for conducting research and providing services in the field of remote sensing and space sciences in order to support decision makers and researchers in different sectors of the development plans of Egypt.

VISION

•NARSS is looking forward to become one of the best scientific agencies locally, regionally, and internationally for conducting research and providing services in the field of remote sensing and space sciences in order to support decision makers and researchers in different sectors of the development plans of Egypt.

Egycubesat-1 Project

MISSION

•NARSS mission is to pursue, transfer, and provide the most modern technology in the fields of Remote Sensing and peaceful applications of Space Sciences, and build the self-capability of utilizing these technologies to support the National development plans and objectives

NARSS International Cooperation

- NARSS pays a great attention to cooperation with both Arabic and foreign countries. This is accomplished through participating in conferences and workshops and signing of scientific cooperation agreements.
- NARSS participates in the international scientific conferences to exchange experience with scientists worldwide, and takes part in the international projects of the Egyptian Academy for Scientific Research and Technology

NARSS International Cooperation

- NARSS has relations with more than 44 countries (Italy, UK, Germany, Japan, USA, South Africa,...) and international and regional organizations.
- NARSS participates in Projects submitted to the EU, US-Egypt Joint Fund, and other similar programs.
- NARSS is implementing a space project in cooperation with Ukraine resulting in launching of the first Egyptian satellite and cooperates with different foreign countries in the field of peaceful use of space

Elements of the Egyptian Space Program

□ Egyptian Space Program 1997 – 2017:

- First Egyptian Satellite EgyptSat-1:
 - Designed and manufactured in Ukraine with Egyptian Participation (2002-2007).
- Second Egyptian Satellite EgyptSat-2:
 - Establishment of know-how and technology with much less foreign technical assistance (2007-2013).
- The third Egyptian satellite DesertSat:
 - Egyptian design and manufacturing with limited foreign technical assistance (2012-2017) utilizing Radar Technology.
- Establishment of assembly testing and development labs.
- Human Resource development.
- Establishing relationship with R&D centers, industrial centers and universities.
- Nano Satellites & cooperation with universities

Egycubesat-1 Project

Control Station

Egycubesat-1 Project

Egycubesat-1 Project

Data Receiving Station

Space Labs

- PayLoad Lab.
- Design Office Lab.
- Engineering Model & Checkout Equipment Lab.
- Manufacturing Components Lab.
- Communications Lab.
- AIT Facility

Payload Lab.

Egycubesat-1 Project

Engineering Model Lab.

Egycubesat-1 Project

Checkout Equipment

Human Resources

- The staff of the ESP is formed of 120 specialist:
 - 15 Ph.D's
 - **50** Design & R/D Engineers.
 - 40 Engineers and Technicians for operating ground segment stations.
 - 15 Supporting Technicians.

	Research, Developmen
	& Innovation Programme
	برناميج البحصوث
	وره بسخسار
Awarded	Project of the

Egycubesat-1 mission Goals:

- □To place Egycubesat-1 on the space map
- Technology demonstration to showEgycubesat-1 can produce reliable data
- from space
- Promote the applied research in space engineering in the Egyptian universities and research Institutes.

Partners

Launch Providers

المعركة الفي من

Launch Services from MHI.
H-2A F17 LV
J-POD From JAXSA

Partners

Egycubesat-1 General Specs □1Kg Mass □10 Cm Cube □ PL, Camera with GSD better than 100m □snapshots for Egypt territories sun synchronous and LEO orbit □Altitude is ranging from 600-700 Km Expected life time is six months □ All components are COTS

Egycubesat-1 Project

Partners

Concept of Design:

□ Performance

Low power, mass, volume

Withstand thermal, vacuum, and space radiation.Low cost components for earth observation.

System integrity

•The mechanical and thermal integrity

Subsystems interfacing compatibility

-compatible with the standard CubeSat Kit

Egycubesat-1 Project

Egycubesat-1 Project

Partners

Internal and External Configuration: Internal Configuration

Camers System Lens Table Image Sensor Back Plane 9.879 cm 11.4 cm Image Processor COM S.S C&DH S.S EPS S.S .1 Batteries 10 cm

External Configuration

□Antenna System

□Solar panels

□ADCS components

Subsystems Mass Budget

Subsystem	Mass (g)	Percent of total
Payload	197	19.7%
ADCS	60	8%
C&DH	56	5.6%
Power	262	26.2%
Communication	120	12%
Structure & Mechanism	240	24%
Thermal	30	3%
Total allocated	965	96.5%
Margin	35	3.5%
Total Mass	1000	100%

Average and peak power during an imaging orbit

Subsystem Power Budget (During Image)

System	Peak power during imaging (mW)	Average power during orbit (mW)	
ADCS	275	285	
CDH	250	250	
COMUNICATION	2000	210	
EPS	300	300	
PAYLOAD	0	20	
TOTAL	2825	1065	

Subsystems Power Budget (During Image dowenload)

Subsystem	Peak power during image download (mW)	Average power during orbit (mW)
ADCS	275	275
CDH	250	250
COMUNICATION	2000	370
EPS	300	300
PAYLOAD	430	40
TOTAL	3255	1235

ORBIT ANALYSIS

Launching opportunity imposes sun-synchronous orbit with altitude between 600 and 700 km.

Altitude	600	650	700
	km	km	km
Semi-major axis (km)	6978.	7028.	7078
	14	14	.14
Orbit draconic period	5801.	5863.	5926
(sec)	23	69	.38
Eccentricity	0.0	0.0	0.0
Inclination (°)	97.79	97.99	98.1
	24	08	928
Longitude of ascending	22:00:	22:00:	22:0
node	00	00	0:00

These orbital parameters will allow the following:

□ Revisit time

Number of days for full coverage of Egypt territories against orbital altitude

A 660-km orbital altitude coverage for the period from 1 Jan to 10 Jan 2011 (29.62%)

A 660-km orbital altitude coverage for the period from 1 Jan to 20 Jan 2011 (71.94%)

A 660-km orbital altitude coverage for the period from 1 Jan to 30 Jan 2011 (88.9%)

A 660-km orbital altitude coverage for the period from 1 Jan to 5 Feb 2011 (100 %)

Conclusion

•Egycubsat-1 is a project that is being implemented at NARSS, supported by the EU, and is expected to be launched 2011.

- •Egycubsat-1 has international partners (SSTL, VEGA, ITU,..).
- •Egycubsat-1 is in the process of negotiating launch services with MHI.
- •Egycubsat-1 has strong relationships with Egyptian universities.
- •Egycubsat-1 is seeking international alliances with Japanese Institutions and JAXA.